Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(41): 58677-58687, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34118001

RESUMO

Microaerobic hydrolysis and acidification (MHA), as a promising pre-treatment method of industrial wastewater, is drawing increasing attention to enhance the hydrolysis-acidification rate and inhibit the production of toxic gas H2S. In the present work, a pilot-scale MHA reactor coupled with anoxic-oxic (A/O) processes for treating the petrochemical wastewater was established and the mechanism and application of the MHA reaction were explored. The results showed that the ratio of VFA/COD was increased by 43-90% and low effluent S2- concentration (less than 0.2 mg/L) was obtained after MHA treatment with 5.5-13.8 L air m-3 h-1 supply. The MHA sludge exhibited a good settleability, a higher protease activity and plentiful community diversity. In addition to the dominant anaerobic bacteria responsible for hydrolysis and acidification such as Clostridiales uncultured, Anaerovorax, Anaerolineaceae uncultured and Fastidiosipila, the sulfate reducing bacteria involving Desulfobacter, Desulfomicrobium and Desulfobulbus, the sulphur oxidizing bacteria involving Thiobacillus, Arcobacter and Limnobacter, the nitrifies such as Nitrosomonadaceae uncultured and Nitrospira, and denitrifies Thauera were also identified. MHA pre-treatment guaranteed the efficacy and stability of the following A/O treatment. The removal efficiency of COD and ammonium of the MHA-A/O system remained at around 78.3% and 80.8%, respectively, although the organic load fluctuated greatly in the influent.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Reatores Biológicos , Concentração de Íons de Hidrogênio , Hidrólise , Esgotos
2.
Environ Sci Pollut Res Int ; 25(10): 9673-9682, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29368195

RESUMO

The secondary effluent from a petrochemical wastewater treatment plant was treated by biological aerated filter (BAF) before and after ozonation, namely BAF1 and BAF2, respectively. The results showed that BAF2 fed with the ozonized secondary effluent exhibited a high efficiency in degrading organic pollutants. The removal efficiency of COD and NH4-N was 6.0 ± 3.2 and 48.2~18.6% for BAF1 and 12.5 ± 5.8 and 62.1~40.9% for BAF2, respectively, during the whole operation. The integration system of ozonation and BAF could tolerate a higher organic loading rate. When HRT decreased from 4 to 1 h, COD removal efficiency decreased from 12 to 4% for the BAF1 system, but it kept almost unchanged at high levels of 27-32% for the ozonation-BAF2 system, with around 20% removal by ozonation. The biomass in BAF2 exhibited a higher activity of protease, DHA, and SOUR than that in BAF1. The organic pollutants in influent and effluent of BAF were mainly ester compounds, which were difficult to biodegrade by BAF. The predominant genera in BAF1 were Gemmatimonadaceae uncultured, Thauera, and Thiobacillus, while the dominant genera in BAF2 were Nitrospira, Gemmatimonadaceae uncultured, and Flexibacter, respectively. Overall, BAF2 performed better than BAF1 in organic pollutant removal and microbial activity. The ozonation process was vital for BAF to treat petrochemical secondary effluent.


Assuntos
Reatores Biológicos/microbiologia , Filtração/métodos , Ozônio/química , Petróleo/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Biodegradação Ambiental , Biomassa
3.
Appl Microbiol Biotechnol ; 100(23): 10193-10202, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27709287

RESUMO

A novel process integrating anaerobic hydrolysis-acidification (HA) and anoxic/oxic (A/O) reactors was developed to treat the actual petrochemical wastewater, which was operated for more than 8 months, the removal efficiency of COD and NH4+-N was monitored, and the microbial community was analyzed. The results showed that the effluent concentrations were maintained at around 99 and 1.3 mg/L, with the removal efficiency of 70.6 and 95.4 %, respectively at a total hydraulic retention time (HRT) of 20 h. The major pollutants in the influent were identified as hydrocarbons, aldehydes, heterocyclic matters, amines, alcohols, phenols, ketones, etc. by GC-MS analysis, while only heterocyclic compounds, ketones, and esters were detected in the effluent after HA-A/O treatment. Bacteria belonging to phyla Chloroflexi, Proteobacteria, and Bacteroidetes were highly enriched in the system. The predominant genera in HA, anoxic, and oxic tanks were Anaerolineaceae uncultured and Desulfobacter, Blastocatella and Anaerolineaceae uncultured, Saprospiraceae uncultured and Nitrosomonadaceae uncultured, respectively. The sulfate-reducing bacteria Desulfobacter, Desulfofustis and Desulfomicrobium were detected only in HA reactor. The ammonium-oxidizing bacteria Nitrosomonadaceae and Nitrosomonas and nitrite-oxidizing bacteria Nitrospira were highly enriched in A/O reactor, which is consistent with the good nitrification performance.


Assuntos
Bactérias/classificação , Biota , Compostos Orgânicos/metabolismo , Águas Residuárias/microbiologia , Purificação da Água/métodos , Aerobiose , Compostos de Amônio/análise , Anaerobiose , Bactérias/isolamento & purificação , Análise da Demanda Biológica de Oxigênio , Cromatografia Gasosa-Espectrometria de Massas , Resíduos Industriais , Poluentes Químicos da Água/metabolismo
4.
Bioresour Technol ; 196: 169-75, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26233329

RESUMO

Microaerobic hydrolysis-acidification (MHA)-anoxic-oxic (A/O) processes were developed to treat actual petrochemical wastewater. The results showed that the overall COD removal efficiency was 72-79% at HRT=20h, and MHA accounted for 33-42% of COD removal, exhibiting good efficiency of acidogenic fermentation. Ammonium removal was more than 94%. The main pollutants in the influent were identified to be benzene, ketone, alcohols, amine, nitrile and phenols by GC-MS, and the majority of pollutants could be removed by MHA-A/O treatment. Proteobacteria was the most dominant bacteria in the system, accounting for more than 55% of the reads. The predominant genera in MHA, anoxic and oxic reactors were Anaerolineaceae and Sulfuritalea, Lactococcus and Blastocatella, and Saprospiraceae uncultured and Nitrosomonadaceae, respectively. This treatment system exhibited good performance in degrading the complex compounds in the petrochemical wastewater.


Assuntos
Reatores Biológicos/microbiologia , Consórcios Microbianos , Poluição por Petróleo/prevenção & controle , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Aerobiose , Anaerobiose , Bactérias , Hidrólise , Nitrosomonadaceae/isolamento & purificação , Proteobactérias/isolamento & purificação , Águas Residuárias/química , Poluentes Químicos da Água/análise
5.
Huan Jing Ke Xue ; 36(2): 604-11, 2015 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-26031089

RESUMO

Effects of dissolved oxygen (DO) on the biodegradation of organic pollutants were investigated using A/O reactors for the treatment of actual petrochemical wastewater. Two A/O reactors, DO were controlled at 2-3 mg x L(-1) in the oxic parts of reactor A and 5-6 mg x L(-1) of reactor B, were operated in parallel for comparison. The nearly a half of year operation results showed that the effluent COD in reactor A (72.5 ± 14.8 mg x L(-1)) was slightly higher than that in reactor B (68.7 ± 14.6 mg x L(-1)) at a HRT of 20 h. The average COD removal efficiencies were 67.0% and 68.8%, respectively. The effluent ammonium concentration was maintained at 0.8 mg x L(-1) and approximately 95% of ammonium removal was achieved. The effluent BOD, concentration was lower than 5 mg x L(-1). This indicated that the organic pollutants could be degraded thoroughly by the A/O processes, which were affected slightly by DO. Results of 454 pyrosequencing analysis of the sludge in oxic parts showed that at the phylum levels, sequences belonged to Proteobacteria, Planctomycetes and Bacteroidetes were abundant with 58.7% and 59.2%, 14.7% and 12.7%, 10.8% and 12.4% of total bacterial sequences in reactor A and B, respectively. Ammonium oxidation bacteria Nitrosomonas, nitrite oxidizing bacteria Nitrospira and obligate aerobic bacteria were highly enriched in reactor B with high DO levels, while the anaerobic denitrifiers Azospira and Acidovora were highly enriched in reactor A with low DO levels. The identified bacteria belonged to genera Novosphingobium, Comamonas, Sphingobium and Altererythrobacter were reported to degrade PAHs, chloronitrobenzene, pesticides and petroleum, which contributed to the degradation of petrochemical wastewater.


Assuntos
Bactérias Aeróbias/metabolismo , Reatores Biológicos/microbiologia , Oxigênio/química , Águas Residuárias/química , Purificação da Água/métodos , Biodegradação Ambiental , Petróleo , Esgotos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...